Образование АСПО и парафинов

Аппарат «ШТОРМ УКМ НП» 2-го поколения («ШТОРМ Д-МГДР») для предупреждения и удаления парафиновых, АСПО и иных отложений на нефтепромысловом и технологическом оборудовании, является высокоэффективным и высокотехнологичным инновационным промышленным оборудованием, не имеющим на сегодня аналогов. Депарафинизация скважин, так и депарафинизация нефтепромыслового и нефтеперерабатывающего оборудования аппаратами «ШТОРМ УКМ НП» 2-го поколения («ШТОРМ Д-МГДР») происходит с видимым значительным экономическим эффектом.

Метод воздействия применяемый в устройстве «ШТОРМ УКМ НП» 2-го поколения в совокупности с использованием новых нано материалов обладающих повышенными диэлектрическими свойствами, а так же высокой теплопроводностью, в разы улучшает технические характеристики устройства и соответственно саму эффективность воздействия аппарата «ШТОРМ УКМ НП» 2-го поколения («ШТОРМ Д-МГДР») на очистку и защиту нефтескважин, труб НКТ, насосов различной модификации, нефтепроводов, узлов перекачки/перегонки нефти и другого оборудования от АСПО, парафинов и прочих различных налипаний и отложений, а так же от солей жесткости и коррозионных процессов, возникающих на эксплуатируемом оборудовании.В основе работы устройства «ШТОРМ УКМ НП» 2-го поколения («ШТОРМ Д-МГДР»), лежит совершенно новый метод воздействия на парафины, АСПО и иные отложения, основанный на ударно резонансно - частотных сигналах радиочастотного излучения с определенной частотой магнитогидродинамического резонанса.

Депарафинизатор «ШТОРМ УКМ НП» 2-го поколения («ШТОРМ Д-МГДР») производит очистку и Удаление АСПО , парафинов, коксообразований и иных видов налипаний на нефтепромысловом и технологическом оборудовании, в технологических трубопроводах довольно за короткое время, менее чем за 8-10 дней.

Образование АСПО и парафиновых отложений в нефтедобыче и транспортировке.

Так, при добыче парафинистых нефтей серьезной проблемой, вызывающей осложнения в работе скважин, нефтепромыслового оборудования и трубопроводных коммуникаций, является образование асфальтосмолопарафиновых отложений (АСПО), формирование которых приводит к снижению производительности системы и эффективности работы насосных установок.Образование эмульсий при выходе из скважины вместе с сопутствующей пластовой водой усиливает осадкообразование.Как известно, борьба с АСПО в процессах добычи нефти ведется по двум направлениям: профилактика (или предотвращение) отложений; удаление ужесформировавшихся отложений.

Выбор оптимальных способов борьбы с асфальтосмолопарафиновыми отложениямии эффективность различных методов зависит от многих факторов, в частности, от способа добычи нефти, термобарического режима течения, состава и свойств добываемой продукции. Несмотря на большое разнообразие методов борьбы с АСПО, проблемаеще далека от разрешения и остается одной из важнейших в отечественной нефтедобывающей отрасли.

Факторы, влияющие на образование АСПО. 

На интенсивность образования АСПО в системе транспорта, сбора и подготовки нефти влияет ряд факторов, основными из которых являются:

  • снижение давления в области забоя и связанное с этим нарушение гидродинамического равновесия газожидкостной системы;
  • интенсивное газовыделение;
  • уменьшение температуры в пласте и стволе скважины;
  • изменение скорости движения газожидкостной смеси и отдельных её компонентов;
  • состав углеводородов в каждой фазе смеси;
  • соотношение объёмов фаз (нефть-вода).
В призабойной зоне пласта (ПЗП) перечисленные факторы меняются непрерывно от периферии к центральной области в скважине, а в самой скважине – от забоя до устья, поэтому количество и характер отложений не являются постоянными. Место выделения АСПО может находиться на различной глубине и зависит от режима работы скважины. Среди условий, способствующих образованию отложений можно назвать снижение давления и температуры, а также разгазирование нефти. 

Известно, что растворяющая способность нефти по отношению к парафинам снижается с понижением температуры и дегазацией нефти. При этом преобладает температурный фактор. Интенсивность теплоотдачи зависит от разницы температур жидкости и окружающих пород на определённой глубине, а также теплопроводности кольцевого пространства между подъёмными трубами и эксплуатационной колонной.

Практика добычи нефти на промыслах показывает, что основными участками накопления АСПО являются скважинные насосы, подъёмные колонны в скважинах, выкидные линии от скважин, резервуары промысловых сборных пунктов. Наиболее интенсивно АСПО откладываются на внутренней поверхности подъёмных труб скважин. В выкидных линиях их образование усиливается в зимнее время, когда температура воздуха становится значительно ниже температурыгазонефтяного потока.

С ростом скорости движения нефти интенсивность отложений вначале возрастает, что объясняют увеличением турбулизации потока и, следовательно, увеличением частоты образования и отрыва пузырьков от поверхности трубы, флотирующие взвешенные частицы парафина и асфальтосмолистых веществ. Кроме того, движущийся поток срывает часть отложений со стенок труб, чем и можно объяснить резкое снижение отложений в интервале 0-50 м от устья, а также, имея большие скорости течения, он оказывается более стойким к охлаждению, что тоже замедляет процесс образования АСПО. Шероховатость стенок и наличие в системе твердых примесей способствуют также выделению из нефти парафина в твердую фазу. Кроме указанных основных факторов на интенсивность парафинизации трубопроводов при транспортировании обводненной продукции скважин могут оказывать влияние обводненность продукции и величина рН пластовых вод.
Причем влияние этих факторов неоднозначно и может быть различным для разных месторождений.

Влияние химического состава нефти на процесс образования АСПО.

 
АСПО, образовавшиеся в разных скважинах отличаются друг от друга по химическому составу в зависимости от группового углеводородного состава нефтей, добываемых на этих скважинах. Но при всём возможном разнообразии составов для всех отложений установлено, что содержание в них асфальтосмолистой и парафиновой компоненты будут обратными: чем больше в АСПО доля асфальтосмолистых веществ, тем меньше будет содержаться парафинов, что в свою очередь определится их соотношением в нефти. Такая особенность обуславливается характером взаимного влияния парафинов, смол и асфальтенов, находящихся в нефти до момента их выделения в отложения

Как показали экспериментальные и практические исследования, прежде чем парафин выделяется на поверхности скважинного оборудования, его кристаллы производят преобразование своих структур так, что, соединяясь между собой, организуют сплошную решётку подобно широкой ленте. В такой форме адгезионные свойства парафина усиливаются во много раз, и его способность «прилипать» к твёрдым поверхностям значительно интенсифицируется.Однако если нефть содержит достаточно большое количество асфальтенов (4-5% и выше), сказывается их депрессорное действие. Асфальтены могут сами выступать зародышевыми центрами. Парафиновые молекулы участвуют в сокристаллизации с алкильными цепочками асфальтенов образуя точечную структуру. То есть образование сплошной решётки не происходит.

В результате такого процесса парафин перераспределяется между множеством мелких центров и выделение парафинов на поверхности существенно ослабляется. Смолы, в силу своего строения, напротив, способствуют созданию условий для формирования ленточных агрегатов парафиновых кристаллов и их прилипанию к поверхности и своим присутствием препятствуют воздействию асфальтенов на парафин, нейтрализуя их. Как и асфальтены, смолы влияют на величину температуры насыщения парафином нефти, однако характер этого влияния противоположный: с ростом их массового содержания в нефти температура насыщениявозрастает (если, например, присутствие смол увеличить с 12 до 32%, то температура насыщения повысится от 22ºC до 43ºC).Температура насыщения нефти парафином находится в прямой зависимости от массовой концентрации смол и в обратной от концентрации асфальтенов.Следовательно, процесс парафинообразования зависит от соотношения асфальтовых (А)и смолистых (С) соединений в составе нефти.

С увеличением параметра А/С температура насыщения будет снижаться – ассоциаты асфальтенов в нефти менее стабилизированы из-за недостатка стабилизирующих компонентов (смол), что и приводит к уменьшению температуры насыщения, процесс кристаллизации парафинов таких нефтей подавляется ассоциатами, и отложение парафина не происходит; при небольших значениях А/С наоборот, температура насыщения возрастает – асфальтены не оказывают воздействия на парафинообразование, парафин свободно выделяется из нефти.

Механизм формирования АСПО 

Под механизмом «парафинизации» понимается совокупность процессов, приводящих к накоплению твердой органической фазы на поверхности оборудования. При этом, образование отложений может происходить либо за счет сцепления с поверхностью уже готовых, образовавшихся в потоке частиц твердой фазы, либо за счет возникновения и роста кристаллов непосредственно на поверхности оборудования.Вероятность закрепления частиц парафина на поверхности оборудования в условиях действующей скважины практически ничтожна, парафиновая частица может закрепиться на стенке оборудования, но при условии, что первоначально она застрянет на ней чисто механически.

При транспортировании нефти по трубопроводу протекают следующиепроцессы.

Нефть поступает в трубопровод и контактирует с охлажденной металлической поверхностью. При этом возникает градиент температур, направленный перпендикулярно охлажденной поверхности к центру потока. За счет турбулизации потока температура нефти в объеме снижается. При этом параллельно протекают два процесса: выделение кристаллов н-алканов на холодной поверхности; кристаллизация н-алканов в объеме нефти.

Практически важным является не само по себе выделение парафинов, а отложение их на поверхности труб и оборудования по направлению теплопередачи. Такие отложения формируются при соблюдении ряда условий:

*наличия в нефти высокомолекулярных углеводородов, в первую очередь метанового ряда;

*снижения температуры потока до значений, при которых происходит выпадениетвердой фазы;

наличия подложки с пониженной температурой, на которой кристаллизуются углеводороды и с которой они настолько прочно сцепляются, что возможность срыва отложений потоком при заданном технологическом режиме практически исключается.

Исследованиями последних лет достоверно установлено, что прямой связи между содержанием парафина и интенсивностью его отложения нет. Отсутствие такой связи обусловлено, прежде всего, существенным различием состава твердых углеводородов – «парафина», а именно, различием в соотношениях ароматических, нафтеновых и метановых соединений в высокомолекулярной части углеводородов, которое при стандартных методах исследования нефтей не определяется. Между тем, доказано, что именно различия в составе твердых углеводородов в основном и предопределяют особенности формирования парафиновых отложений. Чем выше содержание углеводородов с разветвленными структурами ароматических, нафтеновых и изоалкановых, тем менее прочными оказываются парафиновые отложения, поскольку такого типа соединения обладают повышенной способностью удерживать кристаллическими образованиями жидкую массу.

Углеводороды метанового ряда особенно высокомолекулярные парафины, наоборот, легко выделяются из раствора с образованием плотных структур. Ясно, что рыхлые и полужидкие кристаллические отложения сравнительно легко могут быть удалены естественным потоком жидкости в процессе эксплуатации скважин, не вызывая никаких осложнений, и, наоборот, плотные и прочные отложения, сформированные в основном из н-алканов, создают серьезные осложнения, на ликвидацию которых затрачивается много средств и труда.

Состав и свойства АСПО

АСПО не является простой смесью асфальтенов, смол и парафинов, а представляют собой сложную структурированную систему с ярко выраженным ядромиз асфальтенов и сорбционно-сольватным слоем из нефтяных смол (ССЕ). Асфальтосмолистые вещества (АСВ) представляют собой гетероциклические соединения сложного гибридного строения, в состав которых входят азот, сера, кислород и металлы (Fe, Mg, V, Ni, Ca, Ti, Mo, Cu, Crи др.). До 98% АСВ составляетароматические и нафтеновые структуры.

Каркас структуры молекул смол и асфальтенов образует углеводородный скелет, составляющий 70-90% от общего веса молекул. В связке углеводороды – смолы -асфальтены наблюдается постепенная тенденция обеднения водородом и обогащения углеродом; возрастает доля ароматических элементов структуры, и повышается степень их конденсированности; снижается доля атомов углерода в периферийной части; повышается удельный вес атомов в центральном ядре молекул полиядерной структуре с сильным преобладанием ароматических колец. Смолы и асфальтены различаются также по содержанию азота и кислорода. В смолах в основном концентрируется кислород, а в асфальтенах азот.

В зависимости от природы нефти и содержания в ней твердых углеводородов, а также в зависимости от места отбора проб состав отложений включает парафины 9...77 %; смолы 5...30 %; асфальтены 0,5...70 %; связанную нефть до 60 %; механические примеси 1...10 %; воду от долей до нескольких процентов; серу до 2 %.

Обычно под термином «парафины» объединяют всю углеводородную часть отложений. Хотя в данной части и преобладают н-парафины (метановые углеводороды, или алканы с прямой цепью), в меньшем количестве в ней содержатся нафтеновые (циклоалкановые) и ароматические углеводороды с длинными алкильными цепями.Структура парафиновых углеводородов микрокристаллическая, нафтены с длинными алкильными радикалами образуют макрокристаллическую структуру.

Смолы, входящие в состав АСПО, представлены прежде всего нейтральными смолами, выделенными с помощью силикагеля и хлороформа (четыреххлористым углеродом). Это полужидкие, иногда полутвердые темно-коричневого или черного цвета вещества. Относительная плотность смол от 0,99 до 1,08г/см3. Молекулярная масса смол может достигать 1200. Они хорошо растворяются во всех нефтепродуктах и органических растворителях, за исключением этилового и метилового спиртов. В среднем смолы содержат до 15-17% кислорода, серы, азота. С повышением молекулярной массы смол содержание кислорода, серы и азота снижается. Основой структуры молекул смол является плоская конденсированная поликарбоциклическая сетка, состоящая преимущественно из бензольных колец. В этой структурной сетке могут содержаться нафтеновые и гетероциклические кольца (пяти и шестичленные). Периферийная часть конденсированной системы смол АСПО замещена на углеводородные радикалы (алифатические, циклические и смешанные). Природа и количество этих заместителей сильно зависит от свойств нефти. Заместители могут включать функциональные группы(-ОН, -SH, -NH2, =СО и др.). При нагреве до 260-350°С смолы начинают уплотняться и превращаются в асфальтены. С повышением концентрации в растворе смолы, с одной стороны, замедляют рост кристаллов, а с другой, способствуют деформации поверхности кристаллов и возникновению на них новых центров кристаллизации. Степень проявления той или иной тенденции определяется природой смол и обуславливает соответствующую форму и размер кристаллов твердых углеводородов.

По современным представлениям асфальтены это полициклические ароматические сильно конденсированные структуры с короткими алифатическими цепями в виде темно-бурых аморфных порошков. Плотность асфальтенов несколько больше единицы. В асфальтенах содержится (% масс.): 80...86% углерода, 7...9% водорода, до 9% серы и кислорода, и до 1,5% азота. Асфальтены не кристаллизуются и не могут быть разделены на индивидуальные компоненты или узкие фракции. При нагревании выше 300-400ºС они не плавятся, а разлагаются, образуя углерод и летучие продукты. Асфальтены являются наиболее тяжелыми и полярными компонентами нефти. Асфальтены очень склонны к ассоциации, их частицы полидисперсны и поэтому молекулярная масса в зависимости от метода определения может колебаться от 2000 до 4000 а.е.м. Асфальтены рассматриваются как продукты уплотнения смол. Частица асфальтенов представляет собой «мицеллу», ядро которой состоит из высокомолекулярных полициклических конденсированных соединений преимущественно ароматического характера, а адсорбционный слой образуют низкомолекулярные поверхностно-активныесоединения, включающий смолы и нафтеновые кислоты, которые вместе с алифатическими компонентами нефти, образуют сольватную оболочку мицеллы.

Методы борьбы с АСПО

Борьба с АСПО предусматривает проведение работ по двум направлениям.Во-первых, по предупреждению (замедлению) образования отложений. К такиммероприятиям относятся: применение гладких (защитных) покрытий; химическиеметоды (смачивающие, модификаторы, депрессаторы, диспергаторы); физическиеметоды (вибрационные, ультразвуковые, воздействие электрических и электромагнитных полей). Второе направление – удаление АСПО. Это тепловые методы(промывка горячей нефтью или водой в качестве теплоносителя, острый пар,электропечи, индукционные подогреватели, реагенты при взаимодействии с которыми протекают экзотермические реакции); механические методы (скребки, скребки - центраторы); химические (растворители и удалители).

Как показывает практика, наиболее эффективным является предупреждение отложения смолопарафиновых веществ, так как при этом достигается наиболее устойчивая и безаварийная работа нефтепромыслового оборудования, снижаются затраты на добычу и перекачку нефти.

Существует несколько наиболее известных и активно применяемых в нефтедобывающей промышленности методов борьбы с АСПО, но многообразие условий разработки месторождений и различие характеристик добываемой продукции часто требует индивидуального подхода и даже разработки новых технологий…

(по страницам научно - технической литературы: Иванова Л.В., Буров Е.А., Кошелев В.Н. Российский государственный университет нефти и газа им. И.М.Губкина г. Москва)

   
© mpk-vnp
очистка труб  при нефтедобыче